Relative centers and tensor products of tensor and braided fusion categories
نویسندگان
چکیده
منابع مشابه
Fuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملOn Braided Tensor Categories of Type Bcd
We give a full classification of all braided semisimple tensor categories whose Grothendieck semiring is the one of Rep ( O(∞) ) (formally), Rep ( O(N) ) , Rep ( Sp(N) ) , or of one of its associated fusion categories. If the braiding is not symmetric, they are completely determined by the eigenvalues of a certain braiding morphism, and we determine precisely which values can occur in the vario...
متن کاملTensor products and *-autonomous categories
The main use of ∗-autonomous categories is in the semantic study of Linear Logic. For this reason, it is thus natural to look for a ∗-autonomous category of locally convex topological vector spaces (tvs). On one hand, Linear Logic inherits its semantics from Linear Algebra, and it is thus natural to build models of Linear Logic from vector spaces [3,5,6,4]. On the other hand, denotational seman...
متن کاملHopf Galois Extension in Braided Tensor Categories
The relation between crossed product and H-Galois extension in braided tensor categories is established. It is shown that A = B#σH is a crossed product algebra if and only if the extension A/B is Galois, the inverse can of the canonical morphism can factors through object A⊗B A and A is isomorphic as left B-modules and right H-comodules to B⊗H in braided tensor categories. For the Yetter-Drinfe...
متن کاملOn Algebraic Construction in Braided Tensor Categories
Braided Hopf algebras have attracted much attention in both mathematics and mathematical physics (see e.g. [1][4][13][15][17][16][20][23]). The classification of finite dimensional Hopf algebras is interesting and important for their applications (see [2] [22]). Braided Hopf algebras play an important role in the classification of finite-dimensional pointed Hopf algebras (e.g. [2][1] [19]). The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2013
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2013.04.014